國內覽勝
三峽水利 樞紐工程變形監測和庫區地殼形變、滑坡、巖崩以及
水庫誘發地震監測,其規模之大,監測項目之多,都堪稱世界之最。不僅采用目前國內外最成熟最先進的儀器、技術,在實踐中也在不斷發展新的技術和方法,如對滑坡體變形與失穩研究的計算機智能仿真系統;擬進行研究的
三峽庫區滑坡泥石流預報的3S工程等,都涉及到精密工程測量。隔河巖大壩外部變形觀測的GPS實時持續自動監測系統,監測點的位置精度達到了亞毫米。該工程用地面方法建立的變形監測網,其最弱點精度優于±1.5 mm。
北京正負電子對撞機的精密控制網,精度達±0.3 mm。設備定位精度優于±0.2 mm,200 m直線段漂移管直線精度達±0.1 mm。
大亞灣核電站控制網精度達±2 mm,
秦山核電站的環型安裝測量控制網精度達±0.1 mm。
上海楊浦大橋控制網的最弱點精度達±0.2 mm,橋墩點位標定精度達±0.1 mm;
武漢長江二橋全橋的貫通精度(跨距和墩中心偏差)達毫米級。高454 m的
東方明珠電視塔對于長114 m、重300 t的鋼桅桿天線,安裝的垂準誤差僅±9 mm。
長18.4 km的
秦嶺隧道,洞外GPS網的平均點位精度優于±3 mm,一等精密水準線路長120多公里。目前輔助隧道已貫通,僅一個貫通面的情況下,橫向貫通誤差為12 mm,高程方向的貫通誤差只有3 mm。
國外簡述
國外的大型特種精密工程更不勝枚舉。以大型粒子加速器為例,
德國漢堡的粒子加速器研究中心,堪稱特種精密工程測量的歷史博物館。1959年建的同步加速器,直徑僅100 m,1978年的正負電子儲存環,直徑743 m,1990年的電子質子儲存環,直徑2000 m。為了減少能量損失,改用直線加速器代替環形加速器,正在建的直線加速器長達30 km,100~300 m的磁件相鄰精度要求優于±0.1 mm,磁件的精密定位精度僅幾個微米,并能以納米級的精度確定直線度。整個測量過程都是無接觸自動化的。用精密激光測距儀TC2002K距離測量,其測距精度與ME5000相當,對平均邊長為50m的3 800條邊,改正數小于0.1 mm的占95%。美國的
超導超級對撞機,其直徑達27 km,為保證
橢圓軌道上的投影變形最小且位于一平面上,利用了一種雙重正形投影。所作的各種精密測量,均考慮了重力和潮汐的影響。主網和加密網采用GPS 測量,精度優于1×10-6 D。
露天煤礦的大型挖煤機開挖量的動態測量計算系統(德國)。大型挖煤機長140 m,高65 m,自重8 000 t,其挖斗輪的直徑17.8 m,每天挖煤量可達10多萬噸。為了實時動態地得到挖煤機的采煤量,在其上安置了3臺GPS接收機,與參考站無線電實時數據傳輸和差分動態定位,挖煤機上兩點間距離的精度可達±1.5 cm。根據3臺接收機的坐標,按一定幾何模型可計算出挖煤機挖斗輪的位置及采煤層截曲面,可計算出采煤量,經對比試驗,其精度達7%~4%。這是GPS, GIS技術相結合在大型特種工程中應用的一個典型例子。
核電站
冷卻塔的 施工 測量系統。
南非某一核電站的冷卻塔高165 m,直徑163 m。在整個 施工 過程中,要求每一高程面上塔壁中心線與設計的限差小于±50 mm,在塔高方向上每10 m的相鄰精度優于10 mm。由于在建造過程中發現地基地質構造不良,出現不均勻沉陷,使塔身產生變形。為此,要根據精密測量資料擬合出實際的塔壁中心線作為修改設計的依據。采用測量機器人用極坐標法作3維測量,對每一 施工 層,沿塔外壁設置了1 600多個目標點,在夜間可完成全部測量工作。對大量的測量資料通過恰當的數據處理模型使精度提高了一至數倍,所達到的相鄰精度遠遠超過了設計要求。精密測量不僅是 施工 的質量保證,也為整治工程病害提供了可靠的資料,同時也能對整治效果作出精確評價。
瑞士
阿爾卑斯山的特長雙線鐵路隧道哥特哈德長達57 km,為該工程特地重新作了國家大地測量(LV95),采用GPS技術施測的控制網,平面精度達±7 mm,高程精度約±2 cm。以厘米級的精度確定出了整個地區的
大地水準面。為加快進度和避開不良地質段,中間設了3個豎井,共4個貫通面,橫向貫通誤差允許值為69~92 mm(較只設一個貫通面可縮短工期11年)。整個隧道的工程投資預計約15億瑞士法朗,計劃于2004年全線貫通。
高聳建筑物方面,有人設想,在21世紀將建造2 000 m乃至4 000 m的摩天大廈,這不僅是建筑師的夢想,也是對測量工程師的挑戰。